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A Global Asymptotic Stable Quasi Variable PID Regulator for Robot
Manipulators*
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Abstract— In this paper, we describe the stability analysis of regulator nonlinear PID for robots manipulators with only
a nonlinear PID regulator with its gain integral constant and  revolute joints. A Lyapunov candidate function is suggéste
proportional and derivative gains variable. In the integral part and used with the Lyapunov direct method to show global

has been used a saturation function with the position error. This - . 0
regulator is analyzed only for robot manipulator with revolute stability of the system. Our first contribution is the proglos

joints and is mathematically demonstrated a global stability Of @ new PID regulator, with proportional and derivative
of the equilibrium of the system in closed-loop. A Lyapunov Variable gains and integral constant gain. Which improbe the

function candidate is proposed here and its enough to prove previous work in [7] in the fact of not using the knowledge
global stability for the equilibrium of the system in closed loop. of gravity vector
Some simulation are carried out to illustrate the stability results. y
Throughout this paper, the vectors are denoted by bold
I. INTRODUCTION small letters. The norm of vectat is defined ag|z| =
_ ) _ _ vaTx and that of matrixA(x) is defined as the corre-
In industrial practice, robots manipulators are usua"%ponding induced normA(z)|| = \/)\M{A(w)TA(w)} We

controlled with traditional PID regulators. The PID regola use the notation\, {A(z)} and Ay {A(z)} to indicaté the

IS s.t|II W,'de'IY _used In |ndust|r||al app]Iclcatlons due to,_the'rsmallest and largest eigenvalues, respectively, of a syriane
design simplicity, and its excellent performance, esplydia positive definite bounded matrid(x), for anyx € R™. By

applica_tior!s in vyhich do not require any Comppnent (_)f roboén abuse of notation, we defing {4} as the least upper

dynamics into his control law [1] [2] [3] [4]. A simple linear bound (supremum) ofw{A(z)}, for all z € R”, that

and decoupled PID feedback controller with appropriat% Mi{A} = sup, g Au{A(z)}. Similarly, we define
" Te ’ !

control gain achieves desired position without any stead)é\—' {A} as the greatest lower bound (infimum))of { A(x)}
state error. This is the main reason why PID controllers aq;a”rl all z € R", that is, Ay {A} == inf ,_ R Am{A(z)} ’

. . . . H H m T me : m .
still used in industrial robots [1], [3], [6]- The remaining part of the paper is organized as follows.

_ Normally, the selection of the gains for a PID regulatolge tinn 2 presents the robot dynamic model and some
is considering for constants gains. This characteristiabes important properties. The PID with nonlinear gains and the

lishes a limit for the application of this controller. In thases control law is given in Section 3. A Global asymptotic

where a asymptotic stability and performance is important tstability analysis is presented in Section 4. Section 5 rksma
be maintained is necessary selecting variable gain in clmdersome conclusions

maintain both [7]. Gain scheduling, fuzzy control and néura

networks are some of techniques that have been proposed to II. ROBOT DYNAMICS
choose adequate gains depending on the different applicati
for the robot control configuration to reach this. [8], [2]0],
[11], [12], [23].

Although the controller PID for robot manipulators has M(q)g+C(q,9)g+g(q) =T 1)
been widely used in industrial robots, there still exist mpe ) o ) o
problems worthy to be studied. Some of these open probleti§1€re g is the n x 1 vector of joint displacementsj is
are the lack of proof of global asymptotic stability [14].  then x 1 vector of joint velocities,r is then x 1 vector

Recently, the stability for a linear PID controller in clase Of @pplied torques)(qg) is then x n symmetric positive
loop with a robot manipulator has been guarantees only figfinite manipulator inertia matrix(’(q, ¢) is the n x n
local asymptotic sense [1] [2] [3] [4] [15], or in the best of matrix of centrlpeta_ll a_nd Coriolis torques, apdq) is the_
the cases, in a semiglobal sense [16], [14]. n x 1 vector of gravitational torques obtained as the gradient

Inspired in the previous works of PID regulators [17] [18],Of the robot potential energy/(q), i.e.:

Consider the general equation describing the dynamics of a
n-degrees of freedom rigid robot manipulator [19]:

our principal contribution is an analysis and probe of a glob ou(q)
i fibrium gle) = =5~ @)

stability of the equilibrium in closed loop for a class of dq

*This research was supported by DiremtiGeneral de Educam Supe- We assume that all the links are joined together by revolute
rior Tecnobgica (DGEST) Mexico. joints. Four important properties of dynamics (1) are the
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%M(q) ~C(q,q9)| =0

- T

q Vq,qcR"

M(q) = C(g,q) + C(q,4q)".

I1l. PID CONTROL WITH NONLINEAR GAINS

The PID controller is a well known set point control
strategy for manipulators which ensures asymptotic stabil
for fixed symmetric positive definite gain matrices. In order
to improve the performance of the closed loop system,

Property 2. [21] For robots having only revolute joints, theit may be necessary to have variable gains. [17] In this

vectorg (q) is Lipschitz, that is there exist a constaiij > 0
such that

g (@) —g (Y| < Ky || -yl

Property 3. [22] There exists a positive constaht such
that for all z, y, z € R" we have:

1C(z, y)z| < kellyll || =]

If the matrices of the dynamics are known, then th
constantsk, and k. can be obtained using the following
expressions [23]:

J9i(q) D ko = n? (maXi,j,k,q ’Ckij (q)|)
an

whereCy,; (q) is a matrix whose elemerfti, j} is the ¢y,
Christoffel symbol ofC(q, ¢) [23].

kg=mn (maxi’j’q

Lemma 1. [25] Let a gain matrixK,(z) : R® — R™*"
have the following structure

kajl (1‘1) 0 0
K@=| o . @
0 0 ke, ()

Assume that there exist constamis and k,,, wherek,,, >
ki, > 0 such thatk,, > k., (z;) > k;, for all ; € R and
i=1,---,n, then

w2 [ ek (6)ds > g @

Definition:1 [26] F' (m,e,z)with 1 > m > 0, ¢ > 0 and

1
ik“z mi|2’

section we introduce a new PID controller whose main
feature is that stability holds even though the parameters
depend on the robot state. A some case of generalization
of the classical linear PID controller can be obtained by
allowing to have nonlinear proportion&l,(g) and derivative

K, (q) gain matrices and constant integral gain mafixas
function matrices of the robot configuration. This leads to
éhe following proposed control law

= Ky (@)d-K, (@)a+K; / (asat(@(0))+d(0)) do (6)

where K,,(q), K,(g) and K; are positive definite diagonal
n x n matrices, whose entries are denotedihy(q;), kv, ()
and k;, respectively, and; = g, — g denotes the position
error vector, witha > 0.

The closed- loop system is obtained substituting the con-
trol law (6) into the robot dynamics (1), see figure 1 . This
can be written as

q —q
d | q| _ | M'[EyN(@)q— K.(@)q—Clg,4)q —g(q)
dt + Kiw + g(q,)]

w asat(q) — q

(7)
wherew is defined as:
w(t) / [asat(@(0)) + (o)) do — K, g(q,)
0

and we have that (7) becomes an autonomous nonlinear

z € R" denote the set of all continuously differentiable jitarential equation whose origin

increasing functions

sat (x1)

sat (xo
sat (x) (@2)

sat (zy,)
Such that

o |z| >sat(x) >mlz|, forallz e R: |z| <&,
. 52|sat(1;;|ngforallxeR:MZE,

o 1> 964@) 5 o for all z € R,
Assumption 1. There exist positive constanks,;, and k.,
such that Lemma 1 can be applied. That is:

1, [ 1y .

20 Kz | €K (©de> 30 Ka O
0

wherekK,

pus K pi @aren xn constant positive definite diagonal
matrices whose entries atkg,,,, ky;, respectively, withi =
1,2,..n.
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Fig. 1. Block diagram: regulator in closed-loop.
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IV. GLOBAL ASYMPTOTIC STABILITY ANALYSIS

In this section we show that the stability also holds for a o?
class of nonconstant state-depending proportional arideder B - 7)‘M {M(q)}=0
tive gain matrices. More specifically, consider the contal
(6) corresponding to a PID control scheme with nonlinear
: : . L 23
gain matrices. The stability analysis is inspired in [27]. m >« (13)
A. Lyapunov function candidate M a
In order to study stability of equilibrium point (8) we
propose the following Lyapunov function candidate: thus

Vi(q,¢w) >0

q
Vaaw = [ €K,€)d-Ua)+ U
0 In sum, the Lyapunov function candidate (9) is a globally

+g(q)Tq+ quM(q)q (9) positive definite function under the condition (13) before
2 .
T . mentioned.
—asat(q)” M(q)q
J% T K;w B. Time derivative of the Lyapunov function candidate

: L The time derivative of the Lyapunov function candidate (9)
Note that under. Assumption 1 the function in (9) can b%long the trajectories of the closed loop equation (7) is
lower bounded as:

, V(gqgw) = @K, (@a+g@ qa+ga) q
V(a,q,0) > Vi(@,4w) = 53" Kng—Ulay) +U(q) %qTM (@) q — asat (@) M (q) ¢
+ % g — asat(f;)]T M(q) [q — asat(q)] —l—q.TM (q) g — asat (Q)T M (q)q (14)
o2 . ) —asat (§)" M (q) §+ w" K;w
——sat(q)” M(q)sat(q) (10)

{ where we have used the Leibnitz’s rule for differentiatidn o
+§wTKiw +9(q,)"q integrals and Property.
So far, substituting the expanded valuegin (14), we

Now, we will give sufficient conditions to make have the following:

V1(q,q,w) be a positive definite function.

Term L (¢ — asat(@)]" M(q) [q — asat(@)] is a positive

~ . N -T NS T . T =
definite matrix. Due tdK; is assumed> 0 hencejw” K;w Vigqgw)= ¢ [,(p ,(q) a+g (‘_1) q+9(a4) q
is positive definite. +359"M (q) 4+ q"[K, ()G — 9(q)
Let us defineUr (g, q,) as the virtual total potential Ky (q)q+g‘(q‘{)JTrKiw _.C(q’Q)q}
energy [28] consisting of the sum of the robot gravitational —asat (q)” M (q)q
potential energylu(q4, q) + g(q)* g plus the artificial po- —asat (§)" M (q) g +wTKaw (15)
tential energyU(q,, @) induced by the controller, then —asat (fl)T (K, (@) d - Ko (@) g
Ur (@,q4) = 38" Kp@ —U(gy) +U(q) +9(q.)"q +9(qq) + Kiw — C(q,4)q — 9(q)]
+’U)TKZ’U)
whereUr (g, q,) has the following property [28] a simplified result is
Ur (d:44) = Ur (44,0) = B|sat (@))*¥g € R*  (11)
V(G qw) = —4'K.(2)q (16)
where 3 > 1 [\, {K,} — ko], and next term can be lower +asat (@)" Ky (@) q
bou2nded as: ) —asat ((;)TM(q) q
~ % sat (@)" M (@) sat (@) = =% Nar {M (@)} [sat (@) —asat (4) C(a.4)d
(12) —asat (q)" Ky (q)q
_ —asat (q)" g(qq)
from (11) and (12) |23 gotten Lasat @)Tg(q)
N a N
B lsat (@)|* - - A {M (q)} ||sat @][*>0 notice that
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v

—q" Kv(q) g+ asat ()" Ko@aq= |
5a) K0 () g+ asat (@) K. (@) 17 | ==
—34"K., (@)q T |

—1¢"K, (@) g +asat (@) K, (@) q
= —31a - osat ()" K, (@) [q — asat (@)
+%-sat ((})T K, (q)sat (q)

QO
>
o
Position 1 y desired position qd1 (Degrees )
N
&

then it's possible to write (16) as % sw s wm s w s
V(q,¢ = —asat 18
(@, 4,w) asat (q ) T( )4 (18) Fig. 2. Position of joing; and desired positiog,; .
—asat (q)" C" (q,9) 4
—Oésaf( ) [ ( ) 9(‘1)]
1. .

1., 1T N r -
——|qg — asat K, — asat .
2 4 @) @l @) thenV (g, ¢, w) is a globally negative semidefinite function.

2

(0% T ~ ~
+—sat K, t . . .
2 ™ @) (@) sat () Using the fact that the Lyapunov function candidate (9)

Now we provide upper bounds on the following terms is radially unbounded globally positive definite and itseim
derivative is a globally negative semidefinite function, we

. ~\T . .12
—asat ()" M (q) g < adv {M (@)} |4l conclude that the equilibrium of the closed-loop system (7)
~asit (@) 7 (4,9) 4 < aKon/n ] 's stable.
1 1 ) Finally, by invoking the Lasalle’s invariance principlegew
*54'1TK1; @ a < -5 {K (@)} Il conclude that the equilibrium of the closed-loop system is

globally asymptotic stable.
Note. This system has been analyzed no for following of
)T H trajectories. It will be used only for regulation, follovgrof
one random fix point to other one.

an upper bound for gravity is given as

~asat (@) [g(as) ~ 9(9)] < |asat @) |

me@me@—mmMSaWMamwm@+m)H

(
_ V. SIMULATION RESULTS
o |sat (@)l ||g(qd)2+ 9@l < aflsat (@)] Kz [|sat (@)l Computer simulations have been carried out to show
= aKp2 [|sat ()| b

_ _ _ the stability and performance of the PID regulator. The
where K2 had been defined in [21]. A bound for this nextmanipulator used for this simulation is a robot arm with

term is two revolute joins (planar elbow manipulator). The robad an
- - - - - their numerical values are the same as used in [17].
—asat (q)K, (q) g < —asat (q) K, (q) sat (q) [17]

then we can apply Rayleigh-Ritz theorem as follow

—asat (@)K, (q) @ < —adm {K, (@)} ||sat (@)

For last term

In the next figures 2 and 3 the behavior of this regulator
is showed, where its clear to see than its good.

w
=]

1
50 sat (@)" K, (q) sat (@) i ’
_1 21 s 2
< 5@ P X {Ky (@)} I5at (@)]|° 50 Am { K (@)} |Isat (@)
1 o
< §a2Am {K, (@)} |9l Si0f o
This allow us establish that, if 2q
I K, (G % : W 15 % 3 % %
2 { (q)} > a (19) Time (seg)
(A {M (g)} + Kc/n0)
and Fig. 3. Position of joingz and desired positiog,s -
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For the join closer to the base (sub subscript 1 werngo]
added in order to refer at this join), the gains used were
the following equations :

[11]

Kpl = 293 — 200q;
Koy =36 — 5q, [12]
Kin =35 [13]

For the join farther to the base (sub subscript 2 were
added in order to refer at this join), the gains used werié4]
the following equations :

[15]
Kpi =90 — 3204
Ky =15~ 8¢ [1el
Ki1 = 35 [17]
the values ofx and¢ andn werel, 40 and2 respectively.
VI. CONCLUSIONS [18]

In this paper we have proposed a new nonlinear PID
regulator, a little bit more generalized in sense of it admi
variable gains for proportional and derivative terms, fo
robots manipulators. Additional, here had been mathemdgo]
ically demonstrated that this system in closed-loop, wiih t [21]
founded conditions, its equilibrium is globally asymptoti
stable, following to the Lyapunov principles. [22]

Now we are working in the feasibility for real time imple-
mentation using this control strategy. It will be implenesht
in a robot from Tecnlogico de la Laguna. It's a similar to[24]
CICESE's robot of two degrades of freedom.

9]

[23]

[25]
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