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Abstract— In this paper, we describe the stability analysis of
a nonlinear PID regulator with its gain integral constant and
proportional and derivative gains variable. In the integral part
has been used a saturation function with the position error. This
regulator is analyzed only for robot manipulator with revolute
joints and is mathematically demonstrated a global stability
of the equilibrium of the system in closed-loop. A Lyapunov
function candidate is proposed here and its enough to prove
global stability for the equilibrium of the system in closed loop.
Some simulation are carried out to illustrate the stability results.

I. INTRODUCTION

In industrial practice, robots manipulators are usually
controlled with traditional PID regulators. The PID regulator
is still widely used in industrial applications due to their
design simplicity, and its excellent performance, especially in
applications in which do not require any component of robot
dynamics into his control law [1] [2] [3] [4]. A simple linear
and decoupled PID feedback controller with appropriate
control gain achieves desired position without any steady-
state error. This is the main reason why PID controllers are
still used in industrial robots [1], [5], [6].

Normally, the selection of the gains for a PID regulator
is considering for constants gains. This characteristic estab-
lishes a limit for the application of this controller. In thecases
where a asymptotic stability and performance is important to
be maintained is necessary selecting variable gain in orderto
maintain both [7]. Gain scheduling, fuzzy control and neural
networks are some of techniques that have been proposed to
choose adequate gains depending on the different application
for the robot control configuration to reach this. [8], [9], [10],
[11], [12], [13].

Although the controller PID for robot manipulators has
been widely used in industrial robots, there still exist open
problems worthy to be studied. Some of these open problems
are the lack of proof of global asymptotic stability [14].

Recently, the stability for a linear PID controller in closed
loop with a robot manipulator has been guarantees only in
local asymptotic sense [1] [2] [3] [4] [15], or in the best of
the cases, in a semiglobal sense [16], [14].

Inspired in the previous works of PID regulators [17] [18],
our principal contribution is an analysis and probe of a global
stability of the equilibrium in closed loop for a class of
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regulator nonlinear PID for robots manipulators with only
revolute joints. A Lyapunov candidate function is suggested
and used with the Lyapunov direct method to show global
stability of the system. Our first contribution is the proposal
of a new PID regulator, with proportional and derivative
variable gains and integral constant gain. Which improbe the
previous work in [7] in the fact of not using the knowledge
of gravity vector.

Throughout this paper, the vectors are denoted by bold
small letters. The norm of vectorx is defined as∥x∥ =√
xTx and that of matrixA(x) is defined as the corre-

sponding induced norm∥A(x)∥ =
√

�M{A(x)TA(x)}. We
use the notation�m{A(x)} and�M{A(x)} to indicate the
smallest and largest eigenvalues, respectively, of a symmetric
positive definite bounded matrixA(x), for anyx ∈ IRn. By
an abuse of notation, we define�M{A} as the least upper
bound (supremum) of�M{A(x)}, for all x ∈ IRn, that
is, �M{A} := supx∈IRn �M{A(x)}. Similarly, we define
�m{A} as the greatest lower bound (infimum) of�m{A(x)},
for all x ∈ IRn, that is,�m{A} := infx∈IRn �m{A(x)}.

The remaining part of the paper is organized as follows.
Section 2 presents the robot dynamic model and some
important properties. The PID with nonlinear gains and the
control law is given in Section 3. A Global asymptotic
stability analysis is presented in Section 4. Section 5 remarks
some conclusions.

II. ROBOT DYNAMICS

Consider the general equation describing the dynamics of a
n-degrees of freedom rigid robot manipulator [19]:

M(q)q̈ + C(q, q̇)q̇ + g(q) = � (1)

where q is the n × 1 vector of joint displacements,̇q is
the n × 1 vector of joint velocities,� is the n × 1 vector
of applied torques,M(q) is the n × n symmetric positive
definite manipulator inertia matrix,C(q, q̇) is the n × n

matrix of centripetal and Coriolis torques, andg(q) is the
n×1 vector of gravitational torques obtained as the gradient
of the robot potential energyU(q), i.e.:

g(q) =
∂U(q)
∂q

(2)

We assume that all the links are joined together by revolute
joints. Four important properties of dynamics (1) are the
following:

Property 1. [20] The matrixC(q, q̇) and the time derivative
Ṁ(q) of the inertia matrix satisfy:
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q̇T

[
1

2
Ṁ(q)− C(q, q̇)

]
q̇ = 0 ∀ q, q̇ ∈ IRn

Ṁ(q) = C(q, q̇) + C(q, q̇)T .

Property 2. [21] For robots having only revolute joints, the
vectorg (q) is Lipschitz, that is there exist a constantKg > 0
such that

∥g (x)− g (y)∥ ≤ Kg ∥x− y∥
Property 3. [22] There exists a positive constantkc such
that for allx, y, z ∈ IRn we have:

∥C(x,y)z∥ ≤ kc∥y∥ ∥z∥
If the matrices of the dynamics are known, then the

constantskg and kc can be obtained using the following
expressions [23]:

kg = n

(
maxi,j,q

∣∣∣∣
∂gi(q)

∂qj

∣∣∣∣
)
, kc = n2

(
maxi,j,k,q

∣∣Ckij
(q)

∣∣)

whereCkij
(q) is a matrix whose element{i, j} is the cijk

Christoffel symbol ofC(q, q̇) [23].

Lemma 1. [25] Let a gain matrixKx(x) : IRn → IRn×n

have the following structure

Kx(x) =

⎡
⎢⎢⎣

kx1
(x1) 0 ⋅ ⋅ ⋅ 0
0 kx2

(x2) ⋅ ⋅ ⋅ 0
...

...
.. .

...
0 0 ⋅ ⋅ ⋅ kxn

(xn)

⎤
⎥⎥⎦ . (3)

Assume that there exist constantskli andkui
wherekui

>

kli > 0 such thatkui
≥ kxi

(xi) ≥ kli for all xi ∈ IR and
i = 1, ⋅ ⋅ ⋅ , n, then

1

2
kui

∣xi∣2 ≥
∫ xi

0

�ikxi
(�i) d�i ≥

1

2
kli ∣xi∣2 , (4)

Definition:1 [26] F (m, ", x)with 1 ≥ m > 0, " > 0 and
x ∈ Rn denote the set of all continuously differentiable
increasing functions

sat (x) =

∣∣∣∣∣∣∣∣∣

sat (x1)
sat (x2)
...
sat (xn)

∣∣∣∣∣∣∣∣∣

Such that
∙ ∣x∣ ≥ sat (x) > m ∣x∣ , for all x ∈ IR : ∣x∣ < ",
∙ " ≥ ∣sat (x)∣ ≥ m" for all x ∈ IR : ∣x∣ ≥ ",
∙ 1 ≥ d(sat(x))

dx
> 0 for all x ∈ IR,

Assumption 1. There exist positive constantskpli andkpui

such that Lemma 1 can be applied. That is:

1

2
q̃TKpuq̃ ≥

∫ q̃

0

�Kp(�) d� ≥ 1

2
q̃TKplq̃ (5)

whereKpu, Kpl aren×n constant positive definite diagonal
matrices whose entries arekpui

, kpli respectively, withi =
1, 2, ...n.

III. PID CONTROL WITH NONLINEAR GAINS

The PID controller is a well known set point control
strategy for manipulators which ensures asymptotic stability
for fixed symmetric positive definite gain matrices. In order
to improve the performance of the closed loop system,
it may be necessary to have variable gains. [17] In this
section we introduce a new PID controller whose main
feature is that stability holds even though the parameters
depend on the robot state. A some case of generalization
of the classical linear PID controller can be obtained by
allowing to have nonlinear proportionalKp(q̃) and derivative
Kv(q̃) gain matrices and constant integral gain matrixKi as
function matrices of the robot configuration. This leads to
the following proposed control law

� = Kp(q̃)q̃−Kv(q̃)q̇+Ki

∫ t

0

(�sat(q̃(�))+ ˙̃q(�)) d� (6)

whereKp(q̃), Kv(q̃) andKi are positive definite diagonal
n×n matrices, whose entries are denoted bykpi

(q̃i), kvi
(q̃i)

and kii respectively, and̃q = qd − q denotes the position
error vector, with� > 0.

The closed- loop system is obtained substituting the con-
trol law (6) into the robot dynamics (1), see figure 1 . This
can be written as

d

dt

⎡
⎢⎣

q̃

q̇

!̇

⎤
⎥⎦ =

⎡
⎢⎣

−q̇

M−1 [Kp(q̃)q̃ −Kv(q̃)q̇ − C(q, q̇)q̇ − g(q)
+ Ki! + g(qd)]
�sat( q̃)− q̇

⎤
⎥⎦

(7)
where! is defined as:

!(t) =

∫ t

0

[�sat( q̃(�)) + ˙̃q(�)] d� −K−1
i g(qd)

and we have that (7) becomes an autonomous nonlinear
differential equation whose origin

[ q̃T q̇T !T ]
T
= 0 ∈ IR3n (8)

is an equilibrium point.

Fig. 1. Block diagram: regulator in closed-loop.
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IV. GLOBAL ASYMPTOTIC STABILITY ANALYSIS

In this section we show that the stability also holds for a
class of nonconstant state-depending proportional and deriva-
tive gain matrices. More specifically, consider the controllaw
(6) corresponding to a PID control scheme with nonlinear
gain matrices. The stability analysis is inspired in [27].

A. Lyapunov function candidate

In order to study stability of equilibrium point (8) we
propose the following Lyapunov function candidate:

V (q̃, q̇,!) =

∫ q̃

0

�TKp(�) d� − U(qd) + U(q)

+ g(qd)
T q̃ +

1

2
q̇TM(q)q̇ (9)

−�sat(q̃)TM(q)q̇

+
1

2
!TKi!

Note that under Assumption 1 the function in (9) can be
lower bounded as:

V (q̃, q̇,!) ≥ VL(q̃, q̇,!) =
1

2
q̃TKplq̃ − U(qd) + U(q)

+
1

2
[q̇ − �sat(q̃)]

T
M(q) [q̇ − �sat(q̃)]

−�2

2
sat(q̃)TM(q)sat(q̃) (10)

+
1

2
!TKi! + g(qd)

T q̃

Now, we will give sufficient conditions to make
VL(q̃, q̇,!) be a positive definite function.

Term 1
2 [q̇ − �sat(q̃)]

T
M(q) [q̇ − �sat(q̃)] is a positive

definite matrix. Due toKi is assumed> 0 hence1
2!

TKi!

is positive definite.

Let us defineUT (q̃, qd) as the virtual total potential
energy [28] consisting of the sum of the robot gravitational
potential energyUa(qd, q̃) + g(q)T q̃ plus the artificial po-
tential energyU(qd, q̃) induced by the controller, then

UT (q̃, qd) =
1
2 q̃

TKplq̃ − U(qd) + U(q) + g(qd)
T q̃

whereUT (q̃, qd) has the following property [28]

UT (q̃, qd)− UT (qd, 0) ≥ � ∥sat (q̃)∥2 ∀q̃ ∈ IRn (11)

where� ≥ 1
2 [�m{Kp} − kg], and next term can be lower

bounded as:

−�2

2
sat (q̃)

T
M (q) sat (q̃) ≥ −�2

2
�M {M (q)} ∥sat (q̃)∥2

(12)

from (11) and (12) is gotten

� ∥sat (q̃)∥2 − �2

2
�M {M (q)} ∥sat (q̃)∥2 ≥ 0

� − �2

2
�M {M (q)} ≥ 0

√
2�

�M {M (q)} ≥ � (13)

thus
V (q̃, q̇, w) > 0

In sum, the Lyapunov function candidate (9) is a globally
positive definite function under the condition (13) before
mentioned.

B. Time derivative of the Lyapunov function candidate

The time derivative of the Lyapunov function candidate (9)
along the trajectories of the closed loop equation (7) is

V̇ (q̃, q̇,!) = q̃TKp (q̃) ˙̃q + g (q)
T
q̇ + g (qd)

T ˙̃q

+
1

2
q̇T Ṁ (q) q̇ − �sȧt (q̃)

T
M (q) q̇

+ ˙qTM (q) q̈ − �sat (q̃)
T
Ṁ (q) q̇ (14)

−�sat (q̃)
T
M (q) q̈ +wTKiẇ

where we have used the Leibnitz’s rule for differentiation of
integrals and Property1.

So far, substituting the expanded value ofq̈ in (14), we
have the following:

V̇ (q̃, q̇,w) = q̃TKp (q̃) ˙̃q + g (q)
T
q̇ + g (qd)

T ˙̃q

+ 1
2
˙qT Ṁ (q) q̇ + ˙qT [Kp (q̃) q̃ − g(q)

−Kv (q̃) q̇ + g(qd) +Kiw − C(q, q̇)q̇]

−�sȧt (q̃)
T
M (q) q̇

−�sat (q̃)
T
Ṁ (q) q̇ + wTKiẇ (15)

−�sat (q̃)
T
[Kp (q̃) q̃ −Kv (q̃) q̇

+g(qd) +Kiw − C(q, q̇)q̇ − g(q)]

+wTKiẇ

a simplified result is

V̇ (q̃, q̇,w) = −q̇TKv (q̃) q̇ (16)

+�sat (q̃)
T
Kv (q̃) q̇

−�sȧt (q̃)
T
M (q) q̇

−�sat (q̃)
T
C(q, q̇)q̇

−�sat (q̃)
T
Kp (q̃) q̃

−�sat (q̃)
T
g(qd)

+�sat (q̃)
T
g(q)

notice that
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−q̇TKv (q̃) q̇ + �sat (q̃)
T
Kv (q̃) q̇ =

− 1
2 q̇

TKv (q̃) q̇ + �sat (q̃)
T
Kv (q̃) q̇

− 1
2 q̇

TKv (q̃) q̇

(17)

and

− 1
2 q̇

TKv (q̃) q̇ + �sat (q̃)
T
Kv (q̃) q̇

= − 1
2 [q̇ − �sat (q̃)]

T
Kv (q̃) [q̇ − �sat (q̃)]

+�2

2 sat (q̃)
T
Kv (q̃) sat (q̃)

then it’s possible to write (16) as

V̇ (q̃, q̇, w) = −�sȧt (q̃)
T
M (q) q̇ (18)

−�sȧt (q̃)
T
CT (q̇, q) q̇

−�sat (q̃)
T
[g(qd)− g(q)]

−�sat (q̃)
T
Kp (q̃) q̃ − 1

2
q̇TKv (q̃) q̇

−1

2
[q̇ − �sat (q̃)]

T
Kv (q̃) [q̇ − �sat (q̃)]

+
�2

2
sat (q̃)

T
Kv (q̃) sat (q̃)

Now we provide upper bounds on the following terms

−�sȧt (q̃)
T
M (q) q̇ ≤ ��M {M (q)} ∥q̇∥2

−�sȧt (q̃)
T
CT (q̇, q) q̇ ≤ �Kc

√
n� ∥q̇∥2

−1

2
q̇TKv (q̃) q̇ ≤ −1

2
�M {Kv (q̃)} ∥q̇∥2

an upper bound for gravity is given as

−�sat (q̃)
T
[g(qd)− g(q)] ≤

∥∥∥�sat (q̃)T [g(qd)− g(q)]
∥∥∥∥∥∥�sat (q̃)T [g(qd)− g(q)]

∥∥∥ ≤ � ∥sat (q̃)∥ ∥g(qd) + g(q)∥
� ∥sat (q̃)∥ ∥g(qd) + g(q)∥ ≤ � ∥sat (q̃)∥Kℎ2 ∥sat (q̃)∥
= �Kℎ2 ∥sat (q̃)∥2

whereKℎ2 had been defined in [21]. A bound for this next
term is

−�sat (q̃)Kp (q̃) q ≤ −�sat (q̃)Kp (q̃) sat (q̃)

then we can apply Rayleigh-Ritz theorem as follow

−�sat (q̃)Kp (q̃) q ≤ −��m {Kp (q̃)} ∥sat (q̃)∥2

For last term
1

2
�2sat (q̃)

T
Kv (q̃) sat (q̃)

≤ 1

2
�2�m {Kv (q̃)} ∥sat (q̃)∥2

1

2
�2�m {Kv (q̃)} ∥sat (q̃)∥2

≤ 1

2
�2�m {Kv (q̃)} ∥q̃∥2

This allow us establish that, if

1
2�m {Kv (q̃)}

(�M {M (q)}+Kc

√
n�)

> � (19)

and
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Fig. 2. Position of joinq1 and desired positionqd1 .

2 [�m {Kp (q̃)} −Kℎ2]

�M {Kv (q̃)}
> � (20)

thenV̇ (q̃, q̇, w) is a globally negative semidefinite function.

Using the fact that the Lyapunov function candidate (9)
is radially unbounded globally positive definite and its time
derivative is a globally negative semidefinite function, we
conclude that the equilibrium of the closed-loop system (7)
is stable.

Finally, by invoking the Lasalle’s invariance principle, we
conclude that the equilibrium of the closed-loop system is
globally asymptotic stable.

Note. This system has been analyzed no for following of
trajectories. It will be used only for regulation, following of
one random fix point to other one.

V. SIMULATION RESULTS

Computer simulations have been carried out to show
the stability and performance of the PID regulator. The
manipulator used for this simulation is a robot arm with
two revolute joins (planar elbow manipulator). The robot and
their numerical values are the same as used in [17].

In the next figures 2 and 3 the behavior of this regulator
is showed, where its clear to see than its good.
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Fig. 3. Position of joinq2 and desired positionqd2 .
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For the join closer to the base (sub subscript 1 were
added in order to refer at this join), the gains used were
the following equations :

Kp1 = 293− 200q̃1

Kv1 = 36− 5q̇1

Ki1 = 35

For the join farther to the base (sub subscript 2 were
added in order to refer at this join), the gains used were
the following equations :

Kp1 = 90− 320q̃2

Kv1 = 15− 8q̇2

Ki1 = 35

the values of� and� andn were1, 40 and2 respectively.

VI. CONCLUSIONS

In this paper we have proposed a new nonlinear PID
regulator, a little bit more generalized in sense of it admit
variable gains for proportional and derivative terms, for
robots manipulators. Additional, here had been mathemat-
ically demonstrated that this system in closed-loop, with the
founded conditions, its equilibrium is globally asymptotic
stable, following to the Lyapunov principles.

Now we are working in the feasibility for real time imple-
mentation using this control strategy. It will be implemented
in a robot from Tecnlogico de la Laguna. It’s a similar to
CICESE’s robot of two degrades of freedom.
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[27] Meza, J.L., V. Santib́añez y M.A. Llama(2009), “Stable Fuzzy Self-
Tuning PID Control of Robot Manipulators”, Proceedings of the 2009
IEEE International Conference on Systems, Man and Cybernetics,
2009, pg 2698 – 2703.
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